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1 Introduction

Streamwise vortices are known to be an important ingredient of the transition process in

boundary layer ows over both curved and at walls. In the case of at walls the streamwise

vortices are an initially passive product of wave interactions, see for example Hall and Smith

(1991), whilst for curved walls the vortex can be the primary instability of the undisturbed ow.

In recent years there has been much interest in the breakdown process of such vortices. In the

context of G�ortler vortices the experiments of Swearingen and Blackwelder (1987) showed that

the initially steady vortex structure caused by wall curvature undergoes a secondary bifurcation

to an unsteady three-dimensional ow. This secondary instability can be of either the sinuous or

varicose type. In at plate boundary layers the secondary instability is invariably found to be of

the varicose type.

The �rst attempt to understand the breakdown process for G�ortler vortices was given by Hall

and Seddougui (1989). In that calculation the small wavelength G�ortler vortex ow investigated
by Hall and Lakin (1988) was localized in the shear layers trapping the region of vortex activity.
Analytical progress for this case is made possible by the assumption of small vortex wavelength

and Hall and Seddougui (1989) showed that wavy (i.e. sinuous) modes of instability are possible
and are localized near the top and bottom of the vortices. No mode of the varicose type was
found to be unstable. If such a mode exists at small vortex wavelengths then it is presumably not
trapped in the region where the vortex activity decays to zero.

In order to understand the origin of this secondary instability mechanism, Hall and Horseman

(1991) investigated the inviscid linear instability of a G�ortler vortex. The instability analysis for
such a ow is greatly simpli�ed by the fact that the streamwise velocity component of the ow in
the presence of a G�ortler vortex remains an order of magnitude larger than the normal and spanwise
velocity components. This means that an inviscid disturbance to the vortex ow satis�es a two-
dimensional form of the Rayleigh equation dependent only on the streamwise velocity component

of the vortex. Note here that the lengthscale and timescale of the inviscid mode are relatively
short so that nonparallel e�ects are formally negligible in the leading order inviscid instability
analysis. The modi�ed two-dimensional Rayleigh equation found by Hall and Horseman (1991)
was simultaneously found in the context of vortex wave interaction theory by Hall and Smith
(1991). The numerical solution of the eigenvalue problem associated with the modi�ed Rayleigh
equation was discussed by Hall and Horseman (1991) who found that both sinuous and varicose

modes become unstable as the vortex develops in the streamwise direction. The question of which

mode is the most unstable is a function of the history of the vortex, its wavelength and the G�ortler
number. However, Hall and Horseman (1991) were able to obtain quantitative agreement with the

experimental measurements of Swearingen and Blackwelder (1987). Subsequently the instability
problem was examined again by Li and Malik (1994) who found that Hall and Horseman (1991)

had missed the most unstable varicose mode. Note that this latter mode is in fact the second most

unstable overall and that otherwise the results of Li and Malik (1994) were consistent with those
of Hall and Horseman (1991).

Related investigations of the problem discussed above have been given by Liu and Domardzki

(1993) and Yu and Liu (1994). In the former paper a Direct Navier{Stokes (DNS) simulation of

transition in the G�ortler problem was carried out for parallel ows and the results obtained are
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in broad agreement with those of Hall and Horseman (1991). Yu and Liu (1994) reconsidered

the instability problem of Hall and Horseman (1991) but retained some viscous terms in their

approximation. Yu and Liu (1994) are critical of Hall and Horseman (1991) because of their

neglect of viscosity. However, this criticism is perhaps surprising since viscous e�ects are certainly

a second order e�ect and in any case the equations solved by Yu and Liu (1994) retain only some of

the second order e�ects. In e�ect the criticism of Yu and Liu (1994) is equivalent arguing that the

Orr-Sommerfeld equation rather than the Rayleigh equation should be used to describe inviscid

instabilities of parallel ows.

In this paper we shall describe the evolution of the inviscid mode found by Hall and Horseman

(1991). This will be done using viscous{critical{layer and di�usion{layer theories in the context

of a weakly nonlinear instability theory. In particular, we shall consider the evolution of a mode

near the critical streamwise location where the vortex structure has developed su�ciently to (�rst)

render the now three{dimensional boundary{layer ow unstable to inviscid modes (note that, for

example, incompressible two{dimensional Blasius{boundary{layer ow does not support inviscid
instability). At such a location, the ow is marginally unstable and we can consider the evolution
of the most dangerous (important) mode. Related work has been carried out by Wu (1993) and
Smith, Brown & Brown (1993).

Although the analysis we give is for vortex ows generated by wall curvature, it is valid for

any ow where one of the velocity components depends on two spatial variables and is larger than
the other two components. For such more general ows the periodicity in the spanwise direction
which we assume in this paper must be replaced by an appropriate condition in order to derive
the required solvability condition. The procedure adopted in the rest of this paper is as follows:
In Section 2 we formulate the problem to be considered; in Section 3 we determine the outer
solution of the perturbation equations and the required form of the solvability condition, while

the critical layer is discussed in Section 4. At the edge of the critical layer a di�usion layer is
required in order to account for the mean ow correction; this layer is discussed in Section 5 and
the evolution equation is derived; the solution of the evolution equation and some conclusions are
given in Section 6.

2 Formulation

The nondimensionalised Navier{Stokes equations for an incompressible ow may be written
in the form

ux + vy + wz;

ut + uux + vuy + wuz = �px +Re�1(uxx + uyy + uzz);

vt + uvx + vvy + wvz = �py +Re�1(vxx + vyy + vzz);

wt + uwx + vwy + wwz = �pz +Re�1(wxx + wyy + wzz); (2:1a� d)

where Re is the Reynolds number.
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We de�ne new variables Y;Z by writing

y = Re�1=2Y; z = Re�1=2Z; (2:2a; b)

and assume a three{dimensional boundary{layer ow (i.e. Blasius ow plus streamwise vortex) of

the form:

(u; v; w; p) = (�u(x; Y; Z); Re�1=2�v(x; Y; Z); Re�1=2 �w(x; Y; Z); p1 +Re�1�p(x; Y; Z)):

This ow can be generated by several mechanisms but the most obvious one is wall curvature. In

that case x; y in (2.1) measure distance along and normal to the wall and curvature terms must

be inserted into those equations. We then �nd that the ow is determined by

�ux + �vY + �wZ;

�u�ux + �v�uY + �w�uZ = �uY Y + �uZZ;

�vt + �u�vx + �v�vY + �w�vZ +
1

2
G�u2 = ��pY + �vY Y + �vZZ;

�wt + �u �wx + �v �wY + �w �wZ = ��pZ + �wY Y + �wZZ ; (2:3a� e)

which must be solved in conjunction with suitable boundary conditions such as `no{slip' at the
wall (solid boundary) and with the solution tending towards a uniform ow at in�nity (far from
the solid boundary). The parameter G appearing in (2.3) is the G�ortler number. The extra
curvature terms to be inserted in (2.1) play no role in the nonlinear inviscid instability problem

to be investigated here so for convenience we choose not to insert them. Note also that, from Hall
and Bennett (1986), the G�ortler equations are perhaps more conveniently derived by starting with
(2.1) and then making an appropriate Prandtl transformation. Again if this route is followed the
extra terms to be inserted into (2.1) play no role in the following analysis. Thus in the present
investigation it is su�cient for us to use (2.1) to describe the nonlinear state perturbed around the

incoming vortex ow given above. Whether the vortex �eld is generated by curvature, turbulence
screens upstream, or a localized bump at the wall is irrelevant in the following discussion.

In general the solution of (2.3) is a numerical task, see Hall (1988), and it turns out that non-

linear e�ects stabilize the growth of G�ortler vortices; however when a large spanwise wavenumber
assumption is made, Hall & Lakin (1988) demonstrated that much analytical progress can be
made towards the solution of these equations.

Let us �rst recap the linear inviscid stability problem for this three{dimensional boundary{

layer ow. In the neighbourhood of a point x0 the ow is perturbed by a small inviscid disturbance
proportional to

E = exp[i(�X � 
T )];

where
x = x0 +Re�1=2X and t = Re�1=2T; (2:4a� c)

and �, 
 are the (streamwise) wavenumber and frequency of the linear, inviscid secondary insta-

bility. The expansions for the velocities and pressure are

(u; v; w; p) = (�u;Re�1=2�v;Re�1=2 �w; p1 +Re�1�p(x; Y; Z)) + � ((û; v̂; ŵ; p̂)E + c:c:) ; (2:5)
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where `c.c.' represents complex conjugate; barred quantities correspond to the three{dimensional

boundary{layer ow; and the disturbance quantities û; v̂; ŵ; p̂ are, in particular, functions of x; Y

and Z (but not X or T ).

After a little algebra we �nd that the pressure perturbation p̂ satis�es the modi�ed Rayleigh

pressure equation
@

@Y

"
p̂Y

(�u� c)2

#
+

@

@Z

"
p̂Z

(�u� c)2

#
�

�2p̂

(�u� c)2
= 0; (2:6a)

with boundary conditions

p̂Y (y = 0) = 0; p̂(Y !1) = 0; (2:6b; c)

where c = 
=�. This equation was derived by Hall and Smith (1991) who were concerned with

vortex-wave interactions and by Hall and Horseman (1991) in the context of secondary instabilities

of G�ortler vortices. The eigenvalue problem for c � c(�u; x; �) (temporal stability problem) associ-

ated with the partial di�erential system for p̂ was �rst solved by Hall and Horseman (1991). Here
we shall consider the more appropriate spatial instability problem in the presence of nonlinear
e�ects.

Note that c is not a function of Z; if we consider neutral disturbances (those having c entirely
real), equation (2.6a) is singular at Y = YC � f(x;Z), (say) where �u = c. Thus for three{
dimensional boundary{layers, the critical layer is `wavy' in the sense that the location of the
critical level (where the equation is singular) is a function of spanwise location Z. Note further
that the neutral value of c, and hence YC � f(x;Z), are not known in advance of a numerical

solution of the eigenvalue{problem (2.6a-c).
In Figure 1 we show some results for the most dangerous odd mode of instability for a G�ortler

vortex ow. The shape of the curve is similar to that which would be obtained for an inectional
uni-directional velocity �eld by solving the standard Rayleigh equation. In Figure 2 we show the
normal and streamwise perturbation velocity components for an unstable mode. Note that the

mode is concentrated towards the edge of the boundary layer. Since the mode is not neutral it does
not exhibit a critical layer behaviour. In fact it is a di�cult numerical procedure to solve (2.6) in
the neutral case and results are not yet available. Now let us consider the nonlinear problem and
as a starting point we discuss the outer region away from the critical layer.

3 The outer solution for weakly nonlinear inviscid modes

In order to derive the desired nonlinear evolution equation for the amplitude of an inviscid
disturbance mode, it is necessary to split the three{dimensional boundary{layer ow into distinct

regions (layers), each corresponding to di�erent dominant physical e�ects locally governing the

inviscid disturbance; see Figure 3. Let us �rst consider the ow solutions in regions Ia,b, away from
the critical layer, di�usion layer and solid boundaries (the wall) i.e. the bulk of the boundary{
layer. Our aim is to derive the solvability condition associated with an inhomogeneous form of

(2.6a-c). This solvability condition, together with expressions for certain `jumps' in ow velocities

in crossing the critical layer, (to be derived in the later subsections) will yield an evolution equation

for the spatial evolution of the disturbance amplitude.
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Before proceeding any further, let us consider the various streamwise lengthscales which are

present in the analysis. In fact, we employ multiple scales in the streamwise direction x:

x = x0 + �~x; x = x0 +Re�1=2��1 ~X; x = x0 +Re�1=2X: (3:1)

Here x0 now denotes the neutral x{station (in fact, x0 is a point of marginal instability as the

ow �rst becomes unstable to linear inviscid disturbances here); �~x is a small change in x{location

from x0 (assuming �~x > 0, then the ow is now slightly unstable: hence the weakly nonlinear

analysis to follow); Re�1=2��1 ~X is the wave{amplitude modulation scale; and Re�1=2X is the scale

on which the waves oscillate. Note that we are considering the purely spatial stability problem

and thus there are no slow time e�ects.

We consider `�xed{frequency' disturbances so that 
 is �xed; thus the non{neutrality is entirely

due to the the change in x{location �~x. Note that the developing three{dimensional boundary{

layer, and hence the neutral streamwise{wavenumber�, are functions of x. In addition it should be

noted that, if we were considering a three{dimensional shear{layer rather than a three{dimensional
boundary{layer, we would not consider 
 �xed. The non{neutrality would then be entirely due
to the 
 perturbation (i.e. a Strouhal number perturbation).

Since the normal and spanwise velocity components of the unperturbed ow are relatively
small only the streamwise component �u of the three{dimensional boundary{layer ow enters the

problem to orders of concern. We write

�u = �u0 + ��u1 + :::; �u0(Y;Z) = �u(x0; Y; Z); �u1(Y;Z) = �u0x(x0; Y; Z)~x; � � � : (3:2a)

Further, we only need to consider two terms of the fundamental (proportional to E�) and write

(û; v̂; ŵ; p̂) = (û1; v̂1; ŵ1; p̂1) + � � �+ �(û2; v̂2; ŵ2; p̂2) + � � � : (3:2b)

(i) The leading fundamental term

The leading order problem for (û1; v̂1; ŵ1; p̂1) is a partial di�erential system in Y;Z and its
solution may be written in the form

(û1; v̂1; ŵ1; p̂1) = A( ~X)(û
(1)
1 ; v̂

(1)
1 ; ŵ

(1)
1 ; p̂

(1)
1 )E + c:c:; (3:3a)

where A is an amplitude function and û
(1)
1 ; v̂

(1)
1 ; ŵ

(1)
1 and p̂

(1)
1 satisfy

i�û
(1)
1 + v̂

(1)

1Y + ŵ
(1)

1Z = 0; i�(�u0 � c)û
(1)
1 + �u0Y v̂

(1)
1 + �u0Zŵ

(1)
1 = �i�p̂

(1)
1

i�(�u0 � c)v̂
(1)
1 = �p̂

(1)

1Y ; i�(�u0 � c)ŵ
(1)
1 = �p̂

(1)

1Z : (3:3b� e)

These lead to the eigenvalue problem (2.6) (with p̂
(1)
1 replacing p̂) to determine the neutral solution

at x = x0. We �x p̂
(1)
1 by the normalization:

p̂
(1)

1 = p̂1(Z)e
��Y as Y !1; (3:3f)
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where p̂1(Z) is prescribed at some value of Z.

Following Hall and Smith (1991) let us now consider the behaviours of û
(1)
1 ; :::; p̂

(1)
1 near the

critical layer at Y = Yc � f(Z). De�ning s = Y � Yc (so that @Z ! @Z � fZ@s), we write

�u0 = c+ �(x;Z)s+ �2(x;Z)s
2=2 + �3(x;Z)s

2=6 + � � � ;

�u1 = �u10(x;Z) + �u11(x;Z)s+ �u12(x;Z)s
2=2 + � � � : (3:4)

The method of Frobenius gives p̂
(1)
1 in the form

p̂
(1)
1 = �1 + b1�(Z)�2; (3:5a)

where

�1 = �10(Z) + �11(Z):s+ �12(Z):s
2 + �13L(Z):s

3 ln s+ 0:s3 + � � � ; �2 = s3 + � � � : (3:5b)

Note that �10(Z) and b1� have to be determined numerically (the � corresponding to above

and below critical level respectively); while, in particular,

��11 = fZ�10Z;

2��2�12 = ���10ZZ � (2�Z + �fZfZZ)�10Z � �2���10

and

6���13L = 4�fZ�12Z + 2(3�2�� 4fZ�Z + 2�fZZ )�12 � 2��11ZZ + 2(2�Z � �2fZ)�11Z

+(2�2�� 2fZ�2Z + �2fZZ)�11 � �2�10ZZ + 2�2Z�10Z + �2�2�10; (3:6a� c)

where we have de�ned
� = 1 + f2Z : (3:7)

Here, following Hall and Smith (1991), we take �13L = 0. If it were non-zero, at O(Re�1=6)

a jump in v̂ across the sole critical layer would be induced and as we are not looking at upper-

branch scalings there would be no wall layer e�ects to counteract this jump; hence this jump and
the coe�cient of the logarithm{term must be zero.

The velocities û
(1)
1 ; v̂

(1)
1 and ŵ

(1)
1 have the following properties near the critical layer:

û
(1)
1 = d1Zs

�1 + � � � ; v̂
(1)

P1 � v̂
(1)
1 � fZŵ

(1)
1 = d2 + � � � ; ŵ

(1)
1 = �i�d1s

�1 + � � � ;

where

d1 = ��10Z=�
2�� and d2 = (�2��12 + fZ�11Z)=i��: (3:8a� e)
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(ii) The largest forced fundamental

Let us now consider the largest forced term of the fundamental (due to non{neutrality e�ects),

denoted by (û
(1)
2 ; v̂

(1)
2 ; ŵ

(1)
2 ; p̂

(1)
2 ). It is found that

@

@Y

2
4 p̂

(1)

2Y

(�u� c)2

3
5+ @

@Z

2
4 p̂

(1)

2Z

(�u� c)2

3
5� �2p̂

(1)
2

(�u� c)2
=

R2

(�u� c)2
; (3:9a)

with boundary conditions

p̂
(1)

2Y (Y = 0) = 0; p̂
(1)
2 (Y !1) = 0; (3:9b; c)

and

R2 = R
(1)
2

@A

@ ~X
+R

(0)
2 A; (3:9d)

where

R
(1)
2 =

"
ci

�(�u0 � c)
(p̂

(1)

1Y Y + p̂
(1)

1ZZ � �2p̂
(1)
1 )� 2i�p̂

(1)
1

#
;

R
(0)
2 = �

"
�u1

(�u0 � c)
(p̂

(1)

1Y Y + p̂
(1)

1ZZ � �2p̂
(1)
1 )�

2

(�u0 � c)
(�u1Y p̂

(1)

1Y + �u1Z p̂
(1)

1Z )

#
: (3:9e; f)

Note that the equation for p̂
(1)
2 is an inhomogeneous form of that for p̂

(1)
1 ; as mentioned previ-

ously, we must determine a solvability condition for this equation, to ensure that it has a solution.

This solvability condition will (indirectly) lead to the desired evolution equation. To derive the
solvability condition we will essentially follow the conventional method of multiplying the inhomo-
geneous equation by the adjoint of the homogeneous equation and then integrate over the range
0 � Y � 1, 0 � Z � 2� (the latter corresponding to a complete period). Note that we are
assuming that the disturbance has the same period as the basic ow. The latter assumption is

justi�ed by the fact that Hall and Horseman (1991) were unable to �nd any subharmonic distur-
bances of the modi�ed Rayleigh pressure equation. As in all critical layer problems, special care
must be taken to deal with the singular nature of the equations (i.e. the critical layers); however

extra care is necessary for the current problem due to the `waviness' (Z-dependence of Yc � f(Z))
of the critical layer. The fact that additional care is required can be explained as follows: note

that in (Y;Z){coordinates (i) for any �xed Z{value there is a unique critical{Y value, but (ii), for
a �xed Y {value there is either no critical Z{values or many.

Thus we look for co{ordinates which describe the critical{level more suitably; note that the
Prandtl{transformation (s = Y � f(Z)) does `level' out the critical{layer but, at the same time,

leaves the solid boundary `wavy' (i.e. it is described by Y = �f(Z)). Instead we introduce the

normal variable

� = Y=f(Z); (3:10)

this transformation `attens' out the critical{level (it corresponds to � = 1) and also leaves the

wall at (� = 0). Note that this transformation involves f(Z) and thus could not have been used

from the outset i.e. it involves information from the solution of the homogeneous problem (1.6a-c).
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Note that

@=@Y ! (1=f(Z))@=@�; @=@Z ! @=@Z + g(Z)�@=@�; (3:11)

where g = �f
0

=f . In these co-ordinates, the homogeneous equation takes the form:

(1=f2)
@

@�

2
4 p̂

(1)

1�

(�u� c)2

3
5+ (@=@Z + g�@=@�)

2
4(@=@Z + g�@=@�)p̂

(1)
1

(�u� c)2

3
5� �2p̂

(1)
1

(�u� c)2
= 0;

p̂
(1)

1� (� = 0) = 0; p̂
(1)

1 (� =1) = 0; (3:12a� c)

whilst the adjoint, q say, satis�es

(1=f2)
@

@�

"
q�

(�u� c)2

#
+ (@=@Z � g@=@��)

"
(@=@Z � g@=@��)q

(�u� c)2

#
�

�2q

(�u� c)2
= 0;

q�(� = 0) = 0; q(� =1) = 0: (3:13a� c)

Therefore in these transformed co-ordinates the pressure equation is not self{adjoint.
Thus to derive the solvability condition for (3.9a-f) we �rst transform to (�; Z) variables;

multiply both sides by the adjoint q (de�ned above) and then integrate both sides over the range
0 � � � 1; 0 � Z � 2�, excluding the critical layer. This gives

Z 2�

0
dZ

"
1

(�u� c)2

 
�g(qp̂

(1)

2Z � p̂
(1)

2 qZ) +
1

f2
(qp̂

(1)

2� � p̂
(1)

2 q�) + g2(�2qp̂
(1)

2� � �p̂
(1)

2 (�q)�)

!#�=1+
�=1�

=

�

Z 2�

0

Z
1

0
�

qR2

(�u� c)2
d�dZ; (3:14)

where the bar through the integral represents the �nite part (i.e. excluding critical layer e�ects).
Near the critical level, q is of the form

q = q10 + q11(� � 1) + q12(� � 1)2 + 0(� � 1)3 ln(� � 1) + q13(� � 1)3 + � � � ;

whilst R
(0)

2 ; R
(1)

2 have the forms

R
(k)
2 = r

(k)
�1(� � 1)�1 + r

(k)
0 + r

(k)
1 (� � 1) + r

(k)
2 (� � 1)2 + � � � ; k = 0; 1;

(the expressions for the coe�cients are simply obtained by expanding (3.9e,f) near the critical

layer, however they are somewhat long and for the sake of brevity are not given here) while p̂
(1)

2

has the form

p̂
(1)
2 = a2�1 + b2��2 + p̂

(1)

2PI :

Here the �rst two terms correspond to solutions of the homogeneous equation, a2; b2� are as yet
undetermined constants, and subscript PI denotes particular integral. We de�ne a2; b2� so that

p̂
(1)

2PI has no terms in (� � 1)0; (� � 1)3; i.e. p̂
(1)

2PI is properly de�ned. Then, near the critical layer,

p̂
(1)

2PI has the form

p̂
(1)

2PI = �1(� � 1) + �2(� � 1)2 + �3L(� � 1)3 ln(� � 1) + 0(� � 1)3 + � � � ;
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where

�3L = �
(1)

3L

@A

@ ~X
+ �

(0)

3LA;

and

�
(k)
3L =

1

�2
(q12r

(k)
�1 + q11r

(k)
0 + q10r

(k)
1 )�

1

�3
(q11r

(k)
�1�2 + q10r

(k)
0 �2) +

q10r
(k)
�1

2�2
(
3�22
2�2

�
2�3
3�

); k = 0; 1:

Thus the solvability condition becomes

Z 2�

0

3�q10

f2�2
(b2+ � b2�)dZ = �

Z 2�

0

Z
1

0
�

qR2

(�u� c)2
d�dZ: (3:15)

Near the critical layer, the Prandtl{transformed normal velocity has the form

v̂
(1)

2P � v̂
(1)
2 � fZŵ

(1)
2 = ��1(� � 1)�1 + �0 + �1L(� � 1) ln(� � 1) + �1�(� � 1) + � � � (� > 1)

where

�1L = �
3�

i��
�3L and �1+ � �1� = �

3�

i��
(b2+ � b2�): (3:16a� c)

Note that for � < 1, the logarithm ln(� � 1) in (3.16a) must be replaced by ln j� � 1j � i�; the
negative sign in front of i� follows from an inspection of the Stokes lines of the operator that

occurs in the governing equations for the linear problem in the critical{layer.
Thus, the linear part of the jump that v̂

(1)

2P� su�ers across the critical layer is

h
v̂
(1)

2P�

i1+
1�

= �1+ � �1� + i��1L; (3:17)

an expression for the nonlinear contribution to the jump is calculated in the following two subsec-

tions before the two expressions are combined to give the evolution equation.

4 The Critical Layer

Let us now consider the critical{layer ow (corresponding to region III in Figure 3) with our
aim to calculate expressions for the jumps in the solvability condition obtained in the previous

subsection; will shall �nd that another region, the so{called di�usion layer, also needs to be

considered and this is the subject of the next subsection. The analysis has similarities to that
given in Appendix B of Hall & Smith (1991); Appendix A of Brown, Brown, Smith & Timoshin

(1993); and Wu (1993). Therefore only the essential details of the analysis will be given here.
The critical layer is centred on Y = Yc � f(x;Z) and has thickness O(Re�1=6) relative to

the boundary{layer thickness; it is a viscous critical layer. We introduce the critical layer normal

variable � � O(1) where
Re1=2y = Y = f(Z) +Re�1=6�; (4:1a)
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so that now
@

@Z
!

@

@Z
�Re1=6fZ

@

@�
(4:1b)

and the transformed normal velocity vP is de�ned by

vP = v � fZw: (4:1c)

The underlying three{dimensional ow has the form

�u = c+Re�1=6�(Z)� +Re�1=3�2(Z)�
2=2 + � � �+

��u10 + �Re�1=6�u11 + �Re�1=3�u12=2 + � � � : (4:2)

Since we are looking at a viscous critical layer (the ow is marginally unstable) we must assume

that,

�� Re�1=6:

However, depending on the size of �, the above expansion (4.2) will be disordered.
In the critical layer the perturbation to the three{dimensional underlying base ow has the

following form:

(u; vP ; w; p) = �[(Re1=6Û1; V̂P1; Re
1=6Ŵ1; P̂1)E + c:c:]

+ � � � + �2(Re1=2Û0; Re
1=3V̂P0; Re

1=2Ŵ0; Re
1=3P̂0)E

0 + � � � : (4:3)

Here only the terms of direct interest have been shown. The second harmonic does not contribute
to the nonlinear jump and therefore has not been included above.

(i) The fundamental

Writing
Û1 = Û

(1)
1 +Re�1=6Û

(2)
1 + � � � ; (4:4)

with similar expansions for V̂P1; Ŵ1 and P̂1, and substituting into the governing (Prandtl{trans-

formed) equations leads to the following system for the leading order fundamental

i�Û
(1)

1 + V̂
(1)

P1� + Ŵ
(1)

1Z = 0;

i���Û
(1)
1 + �V̂

(1)

P1 + �Z�Ŵ
(1)
1 = �i�P̂

(1)
1 +�Û

(1)
1��;

P̂
(1)
1� = 0

i���Ŵ
(1)
1 = �P̂

(1)

1Z + fZ P̂
(2)
1� +�Ŵ

(1)
1��; (4:5a� d)

which must be solved subject to the condition that solutions match to their outer counterparts

as � ! �1. The y{momentum equation of the next order problem (for Û
(2)

1 , etc) yields, in
particular,

P̂
(2)
1� = fZ P̂

(1)

1Z =�; (4:5e)
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enabling a solution of (4.5a-d) to be determined. The solutions which match with the outer ow

can be found in the paper by Brown, Brown, Smith & Timoshin (1993); in our notation they are

P̂
(1)
1 = A( ~X)�10(Z);

Ŵ
(1)
1 = �

1

a2=3�2

@P̂
(1)
1

@Z

Z
1

0
exp

h
�ia1=3�t� t3=3

i
dt;

Û
(1)
1 =

i

�

@Ŵ
(1)
1

@Z
�

i

4�

 
�Z

�
+
aZ

a

!
@

@�
(�Ŵ

(1)
1 );

and

V̂
(1)

P1 = �

 
�Z

�
+
aZ

a

!
�Ŵ

(1)
1

4
+ d2 �

1

2i���

 
�Z

�
�
fZfZZ

�

!
; (4:6)

where
a = ��=�: (4:7)

At this stage we also point out that �; �; a;� are all real.
It is also possible to consider further terms in the fundamental; in fact, by considering the

terms due to the non-neutrality it is possible to derive the logarithmic jump e�ect deduced earlier
from the asymptotic form of the outer solution as the critical layer is approached. As a number of
di�erent orders have to be considered, and the answers are algebraically messy, we do not present
that analysis here.

(ii) The zeroth harmonic

We now consider the largest zeroth harmonic, or mean-ow correction, (proportional to E0)
due to the nonlinear interactions of the fundamental. Writing

Û0 = Û
(1)
0 +Re�1=6Û

(2)
0 + � � � ; (4:8)

with similar expansions for V̂P0; Ŵ0 and P̂0, and substituting into the governing (Prandtl{trans-

formed) equations leads to the following system for the leading order zeroth harmonic

V̂
(1)

P0� + Ŵ
(1)

0Z = 0;

�Û
(1)
0�� � �V̂

(1)

P0 � �Z�Ŵ
(1)
0 = S1;

P̂
(1)
0� = 0;

fZ P̂
(1)

0Z ��P̂
(2)
0� � 2fZZŴ

(1)
1 Ŵ

(1)�
1 = 0;

�Ŵ
(1)
0�� + fZP̂

(2)
0� � P̂

(1)

0Z = S2;

where, in particular,

S2 = i�Û
(1)�
1 Ŵ

(1)
1 + V̂

(1)�

P1 Ŵ
(1)
1� + Ŵ

(1)�
1 Ŵ

(1)

1Z + c:c:: (4:9a� f)
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As usual in such studies we choose P̂
(1)

0 = 0 (any non{zero choice would just correspond to a

di�erent mean-ow). Thus

�Ŵ
(1)
0�� = S2 + 2

fZfZZ

�
Ŵ

(1)
1 Ŵ

(1)�
1 ;

from which it follows that

Ŵ
(1)
0 ! [�Fw + C]�; V̂

(1)

P0 ! �[�Fw + C]Z�
2=2;

and

Û
(1)

0 !
1

24��

�
�2[�Fw + C]

�
Z
�4; as � !1;

where

Fw( ~X;Z) =

�
(j�10j

2)Z �

�
5aZ

3a
+
7�Z

2�

�
j�10j

2

�
�(2=3)2=3�(1=3)

a5=3�5
jA( ~X)j2; (4:10a� d)

and it is important at this stage to note that the ~X and Z dependences of Fw are separable.
These asymptotes imply that the zeroth harmonic grows on leaving the critical{layer and that

it is necessary to consider another ow region (the di�usion layer) where di�usion e�ects can
counteract this growth. In general such di�usion{layers need to be considered in all nonlinear

analyses dealing with viscous critical layers (see, for example, Brown & Stewartson, 1978; Wu,
1993; cf. the bu�er{layer of weakly nonlinear vortex{wave theories).

5 The Di�usion Layer and the Evolution Equation

This layer (regions IIa,b in Figure 3) is introduced to take care of the growing mean-ow
corrections as the critical layer is left; it turns out that the nonlinear term in the desired evolution
equation for A stems entirely from this region. It is necessary to introduce the new scaled normal
coordinate

~� = (Y � f(Z))=(�2�
1=2c�1=2); �2 = Re�1=4��1=2 � 1; (5:1a; b)

and so here the mean ow has the form

�u = c+ (�=c)1=2�2�~� + � � � : (5:1c)

The perturbation of this mean ow has the form

(u; vP ; w; p) = � [(��12
~U1; ~VP1; �

�1
2

~W1; ~P1)E + c:c:] + � � �+

�2(�42Re
7=6 ~U0; �

2
2Re

2=3 ~VP0; �2Re
2=3 ~W0; �

�1
2

~P0)E
0 + � � � : (5:2)

The fundamental has the expansion

~U1 = ~U
(1)

1 + � � � + �3 ~U
(2)

1 + � � � ; �3 = �2�32Re
7=6; (5:3)
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with similar series for ~VP0; ~W0 and ~P0. Note that the largest fundamental in this region is merely

a continuation of the outer solution in the locality of the critical layer:

( ~U
(1)
1 ; ~V

(1)

P1 ;
~W

(1)
1 ; ~P

(1)
1 ) = (c1=2��1=2d1Z ~�

�1; d2; �i�c
1=2��1=2d1~�

�1; �10)A( ~X): (5:4)

(i) The leading zeroth harmonic

Writing

( ~U0; ~VP0; ~W0) = ( ~U
(1)
0 ; ~V

(1)

P0 ;
~W

(1)
0 ) + � � � ;

we �nd that the governing equations for the leading zeroth harmonic are

��1=2c1=2 ~V
(1)

P0~� +
~W

(1)

0Z = 0; 
@

@ ~X
�

@2

@~�2

!
~U
(1)
0 +

�

c
~V
(1)

P0 +
�1=2�Z

c3=2
~� ~W

(1)
0 = 0;

and  
@

@ ~X
�

@2

@~�2

!
~W

(1)

0 = 0: (5:5a� c)

It follows, from matching with the critical{layer solutions, that the boundary conditions at

~� = �0 are

@4 ~U
(1)
0

@~�4
=

1

�c
(�2F�)Z ;

@2 ~V
(1)

P0

@~�2
= �F�Z;

@ ~W
(1)
0

@~�
= ��1=2c1=2F�;

where F� = �(�Fw + C)=c. These equations can be solved using a Fourier transform method to

give

~U
(1)

0~�~� = �(1=2c�
1=2)~�

Z
1

0
dtt�1=2 exp(�~�2=4t)

�
�[F�( ~X � t)]Z

+(1=4)~�2t�1�ZF�( ~X � t)� (3=2)�ZF�( ~X � t)
�
;

~V
(1)

P0~� = ��
�1=2

Z
1

0
t�1=2[F�( ~X � t)]Z exp(�~�

2=4t)dt;

~W
(1)
0 = �(c=��)�1=2

Z
1

0
t�1=2F�( ~X � t) exp(�~�2=4t)dt: (5:6a� c)

As the meanow correction is larger in the di�usion layer than the critical layer, the leading
order nonlinear jump will result from the interaction of the meanow and the largest fundamental
in this (the di�usion) layer.
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(ii) The largest forced fundamental

The governing equations for the largest fundamental due to non-neutrality e�ects are

i� ~U
(2)
1 + (c=�)1=2 ~V

(2)

P1~� +
~W

(2)

1Z = 0;

i�(�=c)1=2�~� ~U
(2)
1 + �~V

(2)

P1 + (�=c)1=2�Z ~� ~W
(2)
1 + i� ~P

(2)
1 =

� ~U
(1)
0

~U
(1)

1X � (c=�)1=2 ~V
(1)

P1
~U
(1)

0~� �
~W

(1)
1

~U
(1)

0Z ;

~P
(2)

1~� = 0;

i�(�=c)1=2�~� ~W
(2)

1 +
1

�
~P
(2)

1Z = � ~U
(1)

0
~W

(1)

1X : (5:7a� d)

These can be combined to give an equation for ~V
(2)

P1 :

~� ~V
(2)

P1~�~� = (c=�)1=2��1A( ~X)
@

@~�

"
�2i�d1~�

�1( ~U
(1)

0Z �
�Z

�
~U
(1)
0 ) + d2 ~U

(1)

0~�

#
; (5:7e)

substituting for ~U
(1)
0 from equation (5.6) gives the required nonlinear jump

h
~V
(2)

P1~�

i1
�1

=
�1=2

�c3=2
A( ~X)

 
d2 �

i�d1

�
(@Z �

�Z

�
)�

!Z
1

0
�2
 
Fw( ~X � �; Z)

�

!
Z

d�: (5:8)

(iii) The evolution equation

Noting that Fw is separable in ~X and Z, we introduce Fww(Z) such that

Fw( ~X;Z) = Fww(Z) jA( ~X)j2: (5:9a)

Equation (5.8) may then be written in the form

h
~V
(2)

P1~�

i1
�1

=
�1=2

�c3=2

 
d2 �

i�d1

�
(@Z �

�Z

�
)�

!
�2
 
Fww(Z)

�

!
Z

A( ~X)
Z
1

0
jA( ~X � �)j2d�: (5:9b)

Thus the �nal evolution equation can be obtained from (3.15) and (5.9b). If the constants

1; 2 are de�ned by

1 =
Z 2�

0

8<
:
Z
1

0
�

qR
(0)
2

(�u� c)2
d� �

3i�q10��
(0)

3L

�2f2

9=
; dZ

,Z 2�

0

8<
:
Z
1

0
�

qR
(1)
2

(�u� c)2
d� �

3i�q10��
(1)

3L

�2f2

9=
; dZ;
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2 =
Z 2�

0

(
i�q10

cf�2

 
d2 �

i�d1

�
(@Z �

�Z

�
)�

!
�2
 
Fww(Z)

�

!
Z

)
dZ

,

Z 2�

0

8<
:
Z
1

0
�

qR
(1)
2

(�u� c)2
d� �

3i�q10��
(1)

3L

�2f2

9=
; dZ; (5:10a; b)

then the required evolution equation is

dA

d ~X
+ 1(x0)A = �2(x0)A( ~X)

Z
1

0
jA( ~X � �)j2d�; A! 0 as ~X ! �1: (5:11)

Here the parameter

� =
�2Re2=3

�2
(5:12)

measures the `competitiveness' of the nonlinear term, in the evolution equation, relative to the
term corresponding to linear e�ects. For � � 1, linear e�ects will dominate the evolution and
the disturbance will continue to grow after x = x0. Here we concern ourselves with the regime
� � O(1), where linear and nonlinear e�ects have equal inuence on the evolution of the distur-
bance. A more general form of (5.11) can be derived which contains an additional `linear' term,

proportional to ~XA, to account for non{parallelism e�ects which are important for certain ranges
of the parameters (�; �; Re) cf Hall & Smith (1984); Smith, Brown & Brown (1993).

Thus we see that the Z dependence of the problem has been removed by the application of
the solvability condition so that the Z dependence of the nonlinear problem is nonlocal as was
found to be the case in the linear regime. Further, we see that our weakly nonlinear analysis has

lead to a cubic nonlinearity; however rather than appearing as a polynomial ( eg. as AjAj2 if the
evolution was described by the Stuart-Watson method), the nonlinear term is a convolution. The
evolution equation is an integro{di�erential equation which depends on the entire history of the
disturbance. Such evolution equations were �rst derived/proposed by Hickernell (1984). In fact
Wu (1993) and Smith, Brown & Brown (1993) have derived essentially the same equation in their

studies of boundary{layer transition; however, as we have considered a fully three{dimensional

boundary{layer, our coe�cients 1; 2 are far more complicated. Similar equations have also
appeared in other recent papers eg. Smith & Walton (1989), Smith & Blennerhassett (1992), Wu,
Lee & Cowley (1993) and Blackaby (1994).

6 Solution of the evolution equation and conclusions

The nature of the solution of (5.11) depends crucially on the sign of the real part of 2
(de�ned by equation (5.10b). Since the disturbance under investigation becomes unstable as it

moves downstream we know that the real part of 1 is positive. Without calculating the solution
of the neutral leading order eigenfunction and adjoint problems we cannot say what is the sign of
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the real part of 2. We shall therefore discuss both possibilities and use results from experiments

to suggest the most likely scenario. Firstly we note that a suitably rescaled version of (5.10) takes

the form:

dB

d �X
= B �B( �X)

Z
1

0
B( �X � �)d�; B ! 0 as �X !�1: (6:1)

Here B is real, positive and proportional to jAj2 and the � signs correspond respectively to the

cases when the real part of 2 is positive and negative respectively.

The solution of (6.1) which has the required upstream behaviour is given by

B =
2e

�X

(1 � e
�X)2

: (6:2)

If we take the negative sign in (6.2), corresponding to the positive sign in equation (6.1), we

see that a singularity develops after a �nite distance. If the positive sign is taken in (6.2), B grows
as �X increases from �1 until it reaches a maximum and then decays exponentially to zero. At
�rst sight this seems a rather curious fate for a disturbance which was initially unstable on the
basis of linear theory. However the integral term in (6.1) can be interpreted as the e�ect on the

growth rate by the mean ow corrected by the upstream development of the instability. Thus the
mean ow modi�cation which occurs in the early stages of the growth of the disturbance adjusts
the meanow so as to make it linearly stable further downstream.

Experimental observations certainly suggest that the mode identi�ed by Hall and Horseman
(1991) continues to grow after it �rst becomes unstable. Here we are assuming that the mode of
instability discussed by Hall and Horseman (1991) is responsible for the experimentally observed

onset of three-dimensionality in the G�ortler problem. The closeness of the theoretically predicted
most unstable wavenumber and frequency with those measured by Swearingen and Blackwelder
(1987) gives some backing for that assumption. The experiments therefore suggest that the nega-
tive sign is appropriate in (6.2). However without numerical solutions of the neutral eigenfunction
and its adjoint we cannot con�rm that assertion.

We have carried out a viscous critical layer analysis for a marginally unstable inviscid distur-
bance to a ow containing a streamwise vortex structure. The vortex structure could be the result
of a centrifugal instability, wave interactions or other mechanisms. In fact our analysis is valid

for any ow where one of the velocity components depends on two spatial variables and is larger
than the the other two components. For such more general ows, the periodicity in the spanwise

direction, which we assume in this paper, must be replaced by an appropriate condition in order
to derive the required solvability condition.

Our analysis is similar to that of Wu (1993) and Smith, Brown & Brown (1993); however
our analysis is complicated due to the fact that the nonlinear vortex state has rendered the

boundary{layer ow three{dimensional. As a consequence, our disturbances have a general Z{

dependence whereas Wu (1993) was able to consider separate harmonics in Z and derives coupled

amplitude equations. In the problem considered by Smith, Brown & Brown (1993), the initial

boundary{layer ow is two{dimensional; all subsequent vortex activity (three{dimensionality of
the boundary{layer) is due to the relatively large mean{ow corrections induced in the di�usion

(bu�er) layers via nonlinear{interaction e�ects.
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In this paper we have described the evolution of the inviscid modes found by Hall and Horseman

(1991); this has done using viscous{critical{layer and di�usion{layer theories in the context of a

weakly nonlinear instability theory. In particular, we have considered the evolution of a mode

near the critical streamwise location where the vortex structure has developed su�ciently to

(�rst) render the now three{dimensional boundary{layer ow unstable to inviscid modes. At

such a location, the ow is marginally unstable and we can consider the evolution of the most

dangerous (important) mode. We note that our theory is not directly applicable to modes excited

at streamwise locations where the ow supports a band of unstable modes (i.e. at an O(1) distance

downstream from the critical x{location); in such cases the most dangerous mode has too large a

growth rate and the wavenumber will not be close enough to a \neutral' value for weakly{nonlinear

theory to be immediately applicable. However, it can be argued that viscous spreading e�ects (or

some other external e�ect) will reduce the growth rates to a size where a weakly nonlinear theory

(based on unsteady critical{layer theory rather than viscous critical{layer theory) is appropriate.

The papers by, for example, Michalke (1964); Crighton & Gaster (1976) and Hultgren (1992)
support such an argument, which has been used in many recent papers concerned with ow
stability eg. Goldstein & Leib (1988); Goldstein & Hultgren (1988); Goldstein & Leib (1989);
Hultgren (1992); Wu, Lee & Cowley (1993). The evolution of the Hall{Horseman{modes for the
non{marginal stability case is the subject of current study by the authors and will be reported on

in due course.
Our analysis shows that the disturbance amplitude satis�es the integro-di�erential equation

(5.11/6.1). Experimental observations show that the linear growth of three-dimensional distur-
bances to G�ortler vortices is rapidly followed by the onset of turbulence. Such a scenario would
be consistent with (6.1) if the positive sign were taken in that equation. The excellent agree-
ment between the experimental measurements of Swearingen and Blackwelder (1987) and Hall

and Horseman (1991) for the linear regime lead us to believe that this is indeed the case. However
it is possible that the sign to be taken in (6.1,2) depends on the wavenumber and frequency of the
marginally unstable mode and that some disturbances are destroyed by viscous e�ects. Therefore
it is conceivable that the linearly growing disturbances are inhibited by viscosity for weak vortex
states and grow explosively further downstream when the vortex state has been reinforced.

Following the explosive growth of the disturbance new e�ects must come into play and viscosity

will play a secondary role; see Wu, Lee and Cowley (1993) who were concerned with the growth
of inviscid disturbances to Stokes layers. The extension of our work along the line followed by the
latter and indeed other authors is made nontrivial by the fact that in our calculation the critical

layer is not at.
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Figure Captions

Figure 1. The growth rates of the two most dangerous odd modes at a position 100cm from the

leading edge in the experiment of Swearingen and Blackwelder (1987).

Figure 2. The contours of the streamwise and normal velocity components for the most dangerous

odd mode 100 cm from the leading edge in the experiment of Swearingen and Blackwelder (1987).

Figure 3. The various regions of the three{dimensional boundary{layer ow: Ia,b The outer

ow; IIa,b The di�usion layers of relative thickness O(Re�1=4��1=2); III Critical layer of relative

thickness O(Re�1=6); IV Outer wall layer of relative thickness O(Re�1=6); V Inner wall layer of

relative thickness O(Re�1=4). Note that (i), these thicknesses are given relative to the boundary{

layer thickness O(Re�1=2), and (ii), the critical and di�usion layers are distinct from the wall being

centered around the level Y = f(x;Z).
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